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1 Introduction

Database management systems have become widely recognized as a means
of sharing and maintaining data in a way that avoids redundancy and incon-
sistency. They allow the user to insert, delete and modify data and perform
simple queries with a minimum of effort.

In recent years, however, the use of database systems has been extended
to more and more complex applications. Databases address not just the pre-
dictable information required by a personnel department of a company, but
also the less predictable information required by an object oriented simula-
tion, an expert system, or a battlefield commander. Techniques developed
with business applications in mind do not always provide the query flexibility
required. Further, they do not extend themselves easily to take advantage
of rapidly developing technologies like parallel computation and automatic
program transformation.

Logical databases are very attractive for maintaining and manipulat-
ing knowledge and are predicted by some to be the data management sys-
tem of the future[l]. Reasons for this prediction are that the approach is:
well founded, as it is based on logic; cohesive, as it allows data structures,
qleries and computations in a single notation; declarative and therefore
non-sequential, providing more potential for tapping the faster computing
speeds of parallel processors. These features can greatly improve program
maintenance, reliability, generality and efficiency.

In this project we select an existing distributed fact base and reformulate
it as a logical database. Next, we construct some sample queries. Finally,
we address possible query transformations and their impact on the efficiency
of the associated queries. This approach allows evaluation of the logical
database approach: the relative ease of development, query flexibility and
efficiency. These issues are addressed in this paper. Further, the dynamic
nature of the knowledge base selected allows us to examine compromises
between absolute logical correctness and conclusions based on imperfect,
incomplete, or changing data. Future work will examine this problem, as
well as data visualization and query scheduling.

2 The Information Distribution System

Battlefield management has been identifieL as a major thrust for future
Army technological development[2]. Here we find a prime example of the



IDS

FDS- " E FACT EXCHANGE:::FAC"TBASE .i .:: .PROTOCOL

Reference Facts 
PROTOCOL

Organization
Units : :;!. .

Vehdclea
Weapons SECURITY CONTROL
Arrunitlon . MODULE

Data Dictionary
Dynamic Fas Distribution Rules

Mission Overhearing Rules
Target

Status
IUne

l~ridINTERFACE

TCP
APPLICATIONS

Fiepan Orization Worng Scenrio Data
Cart Map Driver B

Figure 1: rhe Information Distribution System. (For this project, browsing
operations are being developed to query the FACTBASE.)

need for both query flexibility and efficiency. In a highly dynamic, unpre-
dictable and hostile combat environment, it is crucial that queries be easily
formulated and quickly resolved.

The Information Distribution System (ILS) was developed as an ex-
perimental prototype to evaluate various data abstraction and distribution
technologies for automatically distributing information to and among fight-
ing level forces. It assumes low bandwidth communications in fhe tactical
combat environment. Specifically, it addresses how to insure required bat-
tlefield information is available at the various locations where the battlefield
management function is performed. As part of this prototype, a FACT-
BASE was developed, which accommodates the wide variety of information
required at brigade and below. Various application programs then access the
FACTPt.c' information through the IDS interface (3]. Figure 1 illustrates
the IJVS structure and its relationship to the various IDS applications.

2



The FACTBASE consists of various C programming structures and has
a small query language with a C-like syntax. Some facts are relatively
static over time, while others are more dynamic [4]. The information in the
FACTBASE is complex, requiring all three possible database schemes: hier-
archica, for the organizational structure; network, for the communications
connectivity; and relational, for the logistics data found in TO&E or equip-
ment manuals. This FACTBASE serves as the foundation for our logical
database.

3 Logical Databases

Logic is a branch of mathematics which allows the explicit expression of
goals, knowledge, and assumptions. It supplies a foundation for deduc-
ing conclusions from premises and for determining validity and consistency.
Logic programming is a formal system for specifying objects and relations
between objects. It departs radically from the mainstream of computer lan-
guages. It is not derived from a physical machine's instruction set, but is
instead founded on an abstract model based on first order logic[5]. A logical,
or deductive, database is a set of facts that are c- "ibined with a set of rules
to allow new facts to be inferred and new relr tonships to be defined. A
logical database is firmly and declaratively founded on a small, but pow-
erful, set of primitives. This characteristic increases reliability, confidence,
and efficiency.

Some of the dominant areas of interest in logic programming are pro-
gram correctness, program optimization, parallelism and program synthe-
sis. Major applications of logic programming have been made to intelligent
databases, natural language processing, computer aided design, molecular
biology, and high level compilation.

Logic programming attempts to apply the rigor of formal logic to com-
plex, computer-based systems that lack such logical foundations. It is an
ideal that has not been, and may never be, realized on an existing machine.
One approximation is given by the programming language, Prolog. Prolog
compilers have become very efficient primarily as a result of work by Warren
and his colleagues[6]. This application is being developed in Prolog.

3
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TERM: 3 * sin (pilY) + (Y * 2)

3 sin

pi Y

Figure 2: A graphical depiction of a term.

4 Developing a Logical FACTBASE

We began this project by constructing a parser and translator to transform
the IDS FACTBASE into equivalent logical relations, which we refer to
as the Logical FACTBASE. The result of the translation is a collection
of approximately 30,000 Prolog clauses. This representation can include
networks, hierarchies and relations. For the initial phase of the project, we
have confined ourselves to the static portions of the database, intending to
address the dynamic portions in the future. The static portions include the
general unit or system properties while the dynamic portions include such
changing values as unit location or assignment.

The founding data structure for the database is the term, made up of
variables and constants. Variables are represented by character strings be-
ginning with an upper case character. Special characters and strings be-
ginning with lower case characters are constants. As Figure 2 illustrates, a
term may be thought of as a tree-like structure with leaves that are variables
or constants (like 3, pi, Y or 2 in Figure 2). The root and internal nodes
of the graph are constants and are called function symbols (+, *,sin and
/). The root (+) is the principal function symbol. It is important to note
that function symbols are passive, syntactic objects without any implied
interpretation.

More precisely, a term is either a variable, a constant, or a function
symbol with arguments that are terms. The most general term is simply
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a variable. A term whose leaves are all constants is called a ground term.
In the usual Prolog system, constants are stored only once and all other
occurrences are simply pointers to the centrally-stored constant. Similarly,
if a variable occurs twice in a term, both occurrences refer to the same
variable (like Y in Figure 2). Thus, a term is not really a tree but a directed,
acyclic graph, that is, a tree with shared branches. This sharing can mean
significant savings in storage and is a side effect of the unification algorithm,
discussed in the next section.

One special kind of term is the list. A list is made up of a nested
sequence of pairs indicated with the period as principal function symbol.
For example, a list of the first five integers is .(1, .(2,.(3,.(4,.(5,[ 1))))),
where we are representing the empty list with []. More convenir ly, we can
represent this list as [1,2,3,4,5].

Intuitively, a term may make up an entire fact or it may be the argument
in a rule stating a fact. Terms also play the role of arrays, pointers, and
record data structures.

A rule is the fundamental statement in a logic program or logical database.

A rule has a head and body separated by ': -'; it ends with a period. The

head contains at most one term, and the body contains zero or more terms
separated by a comma. We can read a rule declaratively, that is as a state-
ment of fact. For example,

P - Q,R.

means that P is true if Q is true and R is true. A rule is also called a clause.
A unit clause is a clause in which the body is empty. A logic program is a
set of clauses.

The IDS data was translated into unit clauses whose principal function
symbols have two arguments. These define proper binary relations and are
to be read as statements of fact. An example would be the clause

ech('U1000000',' COR').

This is a unit clause whose head is a single term. The principle function sym-
bol is ech and it has two arguments, 'U1O00000' and 'COR'. The function
symbol can also be placed between its arguments, in infix form, as

'U1000000' ech 'COR'.

Binary representation was chosen for several reasons. First, it is simple;
database entries are easily written, easily searched, and can often be read



FACTBASE ENTRY LOGICAL FACTBASE
EQUIVALENT

or&_type

idnum = 'U1000000% 'U1000000' category org.
name = 'US CORPS (HEAVY)'; IU1000000' untiatname 'US CORPS (HEAVY)'.

sym ='ElCORHV'; 'U1000000' sym 'FICORHV*.
sub = [ ? org~type (S.idnum 'U10001OO'), 1, 'U1000000' sub unit[idnum('Ul0OOOI00'), num(l)].

? org...ype ($.idnum =="U1100000"). 2. 't11000000' sub -unitidnum('Ul 100000'), num(2)j.
? org,.type (S.idnum "U12000001). 2. 'U1000000, sub unitl[idnum('U1200000'). num(21).
? org..type (S.idnum "J1300000 ), 1, 'U1OOOOOO' sub-unit (idnun,('U1300000'). num l)
? org..type (Sidnumn "U1040000"1. 1. 'U1000000' sub unit[idnum('U1040000'), num(l)1.
7 org..type (S. idinumn "U1060000"1. 1]; 'U1000000' sub unit(idnum('U1060000'), num(l)).

equip
model = AN/TPO-36'; type(e lec). model(' AN /TPQ- 36'))category equip.
claiss 'Veh'; type (elec). model( 'AN/TPQ-36 *)I class veb.
type = 'elec'; L type (e lec) .modelI('AN /TPQ-3 6')j1 desc 'Mortar
desc = 'Mortar Locating Radar Set'; Locating Radar Set'.
props =''
attr = ? equip...attr (maxrg == 15000 && alt (type (elec), model(' AN/'rPQ-36') Imaxrg[ 15000,

'mnori/arty'). 'mortla rty' I.
? equlp,~attr ( maxrg == 24000 && aIt ==[type (elec). model('AN/T1PQ-36') ]maxrg1 24000.

duny.'rockets') 1; rocket&)]

Figure 3: An example of an IDS fact and its translation to proper relation
form.

as if they were sentences. Second, with this approach, there is no loss of
computational power. Rules on binary relations can compute anything that
rules on n-ary relations can compute[7]. Finally, the method we use later
for transforming queries requires that the relations have two arguments j8].

Figure 3 illustrates the translation of two FACTBASE entries from
their original C structure into their logical representation. The C structures
typically consist of a fact type, followed by a series of subfield identifiers
which are associated by = with a subfield value. In the example, org-type
and equip are both fact types. Looking more closely at org..type, idnum is
a subfield identifier, and its value is U1000000, a unique unit identification
code developed for IDS applications. A unit clause is asserted for each of
these triples, with the subfield identifier becoming the binary relation. The
fact type and subfield value are the relation's arguments. A subfield value
of 'E' indicates an empty field and is not translated. In the example, one
organizational fact is translated to 10 unit clauses. Their principal function
symbols are category, unit-name, ech, sym and sub-unit. Each relation has
2 arguments. The sub-unit function, for example, has 2 arguments: parent
unit id; and a list of 2 terms, the subunit and its number of occurrences.

After the translation was accomplished, a small parser was written in
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were established. The binary relations resulting from the translation were
all defined in infix form.

Finally, the database was extended with new relations. These relations
were not part of the organizational or logistical structure, but were created to
help form new queries. For example, as illustrated in Figure 3, we know the
maximum range of our weapons. We can extend the data by defining what
we mean for a given distance, R, to be within firing range of a particular
weapon of type T and model M:

[T, M] can-fire-at-targets-at-range R -

[T, M] maxrg [Range, Alt],
Range > R.

This new relation could be useful in searching for the right weapon to
use against a given target. The new relations extend the translated database
entries to a conceptually larger database. They are, in fact, rules that assist
in formulating queries. This brings us to our next topic.

5 Querying the Logical FACTBASE

The next step in the application was to construct some queries. The fun-
damental tools for querying are unification and backward inferencing. We
therefore begin this section with a brief explanation of these basic proce-
dures.

The unification algorithm is a solution procedure that derives values for
variables from an equation between two terms. Given two terms S and T
the unification algorithm determines values for variables as follows:

e if S and T are both constants then unification succeeds if they are
identical and fails if they are different.

* if S is a variable, then the value for S is S = T. (Symmetrically, if T
is a variable, then the value for T is T = S.)

a if S and T are more general terms with the same function symbols,
then the solution is determined by corresponding unification of their
arguments.

e if S and T are more general terms with different function symbols then
unification fails.

7



DATABASE REPRESENTATION PARENT RELATION GRAPH

FACTS Dionysus
zeus is-father of donysus.
semele is_mother of dionysus. Semele

cadmus is-father of sernele.
harmonia is mother of semele.- -Harmonia Cadmus

ares is father of harmonia.
aphrodite ismother of harmonia. Are Aphrodite

zeus is father of ares.
hers is_-mother-of ares- Zeus Hera

RULES
X is-parent of Y - X is father-of Y.
X is_parent of Y X is motherof Y.

Figure 4: Representing the parent relationship in a logical database.

Unification, then, can be applied to extract components of clauses. Figure
4 illustrates a familiar example of a family database [9]. In this example,
consider unifying the two terms X is-father-of ares and zeus is-father-of 1'.
From

X is-father-of ares = zeus is-father-of Y

we would conclude that a value for X is X = zeus and a value for Y is
Y = ares.

The second fundamental tool is backward inferencing, which is essen-
tially the application of one rule to a goal, reducing it to a conjunction
of subgoals. Inferencing allows us to arrive at conclusions from facts and
rules. For example, in Figure 4, zeus is-parentof Y can be reduced to zeus
is-father-of Y using the very first rule allowing us to eventually infer that
Y = dyonysus. If we look for more solutions, we find that Y = ares also
satisfies the query.

A goal, or in our case a database query, is a clause with an empty head.
This goal is a conjunction of subgoals which is solved by solving all sub-
goals. Each subgoal is solved by unifying it with the head of a clause in
the database. This creates values for variables. A single backward inference
reduces this subgoal to another conjunction of subgoals until reaching the
subgoal true, which is trivially solvable. In Prolog, subgoals are solved in
sequential, left to right order and clauses are chosen in top to bottom order

8



DATABASE REPRESENTATION ORGANIZATION HIERARCHY

B3220000

*B3220000' subunit [idnum('B3220100'), num(l)]. I

'B3220000' subunit [idnum('B3223000"). num(l)]. I I
B3220000' subunit [idnum(83224

000'), nuni(i). F

B3220100 B3223000 B3224000

'B3223000' subunit [idnum('B3223200"), num(l)J. . - . " """

'B3223000' subunit [idnum('B3223600'). num(l)].

'B3223200' subunit (idnum('B3223210"), num(1)]. B3223200 B3223600

"B3223600' sub_unit [idnun('B3223610'), num(l)].

'B3223600' sub_unit [idnum('B3223620'), num(l)]. +

B3223210 B3223610 B3223620

Figure 5: Representing the subunit relationship in the Logical FACTBASE.

with backtracking to find additional solutions. Again, looking at Figure 4,
we can determine who are the parents of Semele by solving the goal

-X is-parent-of semele.

This unifies with the head of the first rule, yielding X is-fatherof semele.
The solution for X in that subgoal is X = cadmus. Alternatively, the goal
resolves to X is-mother-of semele, in which we find a alternate solution
X = harmonia.

In Figure 5 we extend this technique to the FACTBASE data, using
the subunit relation somewhat like the parent relation. A subunit B means
thatA and B are members of the subunit relation, with A being the parent
unit.

Once the database has been established, a number of queries can be
solved without any programming, by the selective placement of constants
and variables in goals. Prolog attempts to unify the goal with unit clauses
in the database. For example, using the data in Figure 5, we may identify
all the subunits of B3220000, with the simple query, 'B3220000' sub-unit
X. Further, all relations defined with unit clauses can be queried in either

9



direction. This is a powerful aspect of the unification algorithm, for it allows
us to answer questions about the converse of a relation in the database as
well as about the relation itself. For example, the subunit relation has been

defined, so we have immediate access to its converse, the parent relation.
That is, we can identify the parent unit for B3223600 through the query,
X sub-unit [idnum('B3223600'), _num]. Similar queries can be made for all
relations established in the database. Queries solved with a single unification
are satisfied almost immediately.

As indicated previously, more complex queries may require the definition
of new relations. Suppose we wish to know whether B3223610 is under the
control of B3223000. In this case, we would like to know if B3223610 is a
subunit of B3223000, or if it is a subunit of a subunit of B3223000, etc. We
define the controls relation recursively as follows:

A controls B: - A subunit B.
A controls B : - A subunit C,

C controls B.

Now, we may query with the goal 'B3223000' controls B3223610'. Prolog
verifies that there is a path through the organization graph in Figure 5 from
B3223000 to B3223610 through B3223600, returning the answer true.

6 Query Transformations

Finally, we address possible query transformations and their resulting im-
pact on the efficiency of the associated queries. Sometimes the most obvious
expression of a query is not the most efficient for implementation, as illus-
trated in the example below. One of the benefits we hope to derive from this
logical approach to computation is to be able to state queries in a straight-
forward manner, and then reliably transform these queries to optimize their
execution.

The solution procedure for a query starts by unifying the goal with the
head of a clause to determine values for variables. This environment is used
to solve each subgoal of the body in turn. If any subgoal is unsolvable then
alternate clauses are applied by backtracking to create possible alternate
paths. A solution can be found more efficiently if the search can be correctly
constrained in the appropriate direction. But note that an overconstrained
system may be unsolvable.

Consider the problem of searching for a path through a graph described
by a relation R. This is essentially asking if the two endpoints (x, y) of the

10



graph are members of the transitive closure R+ of R. A pair is a member of
the transitive closure of R if either the pair is in R or there is an intermediate
point z such that (x, z) is in R and (z, y) is in R+. In symbols this is written
as

R + = {(x,y)j(x,y) E R or 3z,(x,z) E R, and (z,y) E R+}.

Operationally, R + is the exhaustively repeated application of R.
The controls relation, that is the transitive closure of the subunit rela-

tion, provides a perfect example of how we can improve the efficiency of the
solution procedure by transforming the query. In this example, we say that
A controls B if there is a path from A to B in the graph formed by the
subunit relation. The controls definition naturally schedules subgoals from
the top of the command hierarchy downward. As illustrated in the following
example, this schedule is inappropriate and inefficient for the database as
structured. A bottom up search would have been better.

Consider the command hierarchy depicted in Figure 6. In this graph,
the lines indicate the subunit relation, with higher nodes indicating parent
units and lower nodes their subunits. This simplified example allows us to
]im.;. the controls relation to two levels. That is, a unit controls its subunits
and its subunits' subunits. To determine if B3224600 is under the control
of B3220000 we find an intermediate unit V such that B3220000 subunit V
and V subunit B3224600. Efficiency greatly depends on which subgoal is
selected first. If we start with the goal B3220000 subunit V then we have
multiple solutions, requiring us to travel through the tree, first through node
B3220100 and its subunits, then through node B3223000 and its subunits,
and finally to our solution point under B3224000. On the other hand, if we
start with the goal V subunit B3224600, it has a unique solution, quickly
generating our solution path.

The reason that the second subgoal should be chosen first is that the
converse of the subunit relation, denoted (subunit-), is a function. Each
unit has exactly one parent unit. Thus it would be much more efficient to
carry out the search in this order, as each choice would be unique. We,
therefore, transform the query to find a path in the tree with

controls- = (subunit-)+,

denoting transitive closure with +. The subunit relation does indeed de-
fine a tree, so A controls B is reversible. Since the converse of subunit
is a function, the paths through the tree can be most efficiently found by

11



ORGANIZATION HIERARCHY

B3220000

B3220100 B3223000 B3224000

r I I _ I ..

B3223200 83223600 B3224200 B3224600

Figure 6: A sample command hierarchy graph.

searching up the tree instead of top down. The bottom up search requires
no backtracking. Here we note that it is the nature of the subunit relation
that suggests this transformation. For the large organizational structure in
the IDS, the bottom up solution of a sample query was immediately solved
whereas the corresponding top down query took more than an hour.

The reversibility of the unification algorithm is what allows us to repre-
sent converse relations. Some knowledge about reversibility can save a great
deal of computation time. Searches both up and down the hierarchy in the
originally defined IDS database would have required that we add the con-
verse relations to the data, essentially doubling the storage requirements for
the subunit relation. This trades storage for time, and sacrifices modularity
and maintainability. With our new approach, the tradeoff is unnecessary.

On the other hand, while queries are completely reversible when solved
with unit clauses, termination is unpredictable in general. In Prolog, some
queries that can be easily solved in the forward direction may not termi-
nate in the reverse direction. In addition, some operations in Prolog only
have meaning when all arguments are ground terms. Attractive solutions to
these problems are emerging from research in constraint logic programming
and higher order extensions to logic programming[8,10]. These approaches
solve bigger classes of problems by giving declarative extensions to some
operations in logic programming such as negation, inequality, and ordering.

12



7 Future Work

Future work will emphasize three main areas: first, the notoriously difficult
problem of synchronizing data updates with data queries, including deter-
mining constraints that can maintain integrity; second, methods of pictori-
ally representing the relations in the Logical FACTBASE and the associated
queries; and, finally, further query optimizations.

In Section 2 we indicated that the static portions of the FACTBASE
were translated first. The dynamic data would be translated in future. This
is because logic programming with a set of clauses does not accommodate
axioms that may be modified in the middle of a deduction [11]. An at-
tractive compromise, however, can be derived from a thorough treatment of
binary relations[8,12]. Accepting the fact that change is an integral part of
our distributed database, we concentrate on cleanly separating the abstract
portions of our relations, the rules, from the facts. That is, we separate the
program from the data. Once this is accomplished, the algebra of equations
between relations is an appropriate formalism and an ideal foundation for
query optimizations that hold independently of the data. The FACTBASE
information will be set aside as an area designated to be modified. Queries
operate on a snapshot of the database without attempting to maintain a
notion of logical truth. Equations between combinations of relations hold
independently of the data. We extend this concept and further partition the
data into distinct relations to represent partitions of the database such as
subunit and owns-equipment. Then we can pass these relations along as ar-
guments to the previous operations. This adds another level of generality to
the query language so that generic operations can be defined and applied to
portions of the database or to other predefined operations on the database.

Secondly, we will experiment with ways of pictorially representing the
relations in the logical FACTBASE and the associated queries. There is a
close relationship between proper binary relations and combinatorial graphs.
This strongly suggests a visualization technique for logical databases that
may allow the casual user to bypass much of the notation and abstract
syntax.

Finally, we will explore schedules for constraints as binary relations. This
includes further methods for reordering subgoals, merging recursions, and
propagating constraints. There is also a close relationship between declar-
ative languages and parallelism. The mathematical properties of program
operations such as associativity and commutativity indicate that order of
some computations can be ignored.

13



8 Conclusions

We selected an existing distributed fact base and reformulated the static
portion as a logical database of binary relations. A parser of C structures
was built and a translator constructed to separate the information into re-
lations for querying and updating. We identified the operations required to
develop our queries. Finally, some high level, decision critical queries were
formulated to test flexibility. Simple query transformations were applied to
improve efficiency.

At the end of this first phase, we find that the logical database has a
relatively simple structure. Once its structure was established, a number
of queries were immediately available through unification. These were sat-
isfied almost instantaneously. More complex queries were built using rules
as statements of a recursive programming language, with power, flexibility
and limited reversibility. The approach to date puts us in a position to
begin examining the effort required to develop queries and the computation
time required to perform those queries on the data one might expect in a
battlefield environment.

A single inference is comparable to one statement executed in a proce-
dural language. The number of inferences involved is critical to efficiency
and may be very large if the order of subgoal selections is not carefully con-
trolled. Prolog queries are not always reversible, partly because subgoals are
chosen in a predetermined order. This makes naive queries more difficult to
formulate and implies that careful attention must be paid to the solution
procedure when scheduling subgoals. A view of programs as proper binary
relations, along with an associated set of equations between relations, is a
step toward understanding and harnessing the limited reversibility of logic
programs.

The primary claim of this work is that logical databases are a conve-
nient vehicle for the management of battlefield information. The primary
advantages are improved program maintenance, reliability, efficiency and
generality. While no system can perfectly represent a distributed database,
we have begun applying a logical model that is an attractive compromise,
viewing both queries and data as proper binary relations. The query lan-
guage we will use has a set of operations with an associated theory. This
theory is independent of the data and should be unaffected by its volatility.
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